Two Results on Real Zeros of Chromatic Polynomials
نویسندگان
چکیده
This note presents two results on real zeros of chromatic polynomials. The first result states that if G is a graph containing a q-tree as a spanning subgraph, then the chromatic polynomial P (G,λ) of G has no non-integer zeros in the interval (0, q). Sokal conjectured that for any graph G and any real λ > ∆(G), P (G,λ) > 0. Our second result confirms that it is true if ∆(G) ≥ bn/3c − 1, where n is the order of G.
منابع مشابه
The largest non-integer real zero of chromatic polynomials of graphs with fixed order
It is easy to verify that the chromatic polynomial of a graph with order at most 4 has no non-integer real zeros, and there exists only one 5-vertex graph having a non-integer real chromatic root. This paper shows that, for 66 n6 8 and n¿ 9, the largest non-integer real zeros of chromatic polynomials of graphs with order n are n − 4 + =6 − 2= , where = ( 108 + 12 √ 93 )1=3 , and ( n− 1 +√(n− 3)...
متن کاملChromatic polynomials of random graphs
Chromatic polynomials and related graph invariants are central objects in both graph theory and statistical physics. Computational difficulties, however, have so far restricted studies of such polynomials to graphs that were either very small, very sparse or highly structured. Recent algorithmic advances (Timme et al 2009New J. Phys. 11 023001) nowmake it possible to compute chromatic polynomia...
متن کاملZeros of adjoint polynomials of paths and cycles
The chromatic polynomial of a simple graph G with n > 0 vertices is a polynomial Σk=1α(G, k)(x)k of degree n, where (x)k = x(x− 1) . . . (x− k+1) and α(G, k) is real for all k. The adjoint polynomial of G is defined to be Σk=1α(G, k)μ , where G is the complement of G. We find the zeros of the adjoint polynomials of paths and cycles.
متن کاملA zero-free interval for chromatic polynomials
Woodall, D.R., A zero-free interval for chromatic polynomials, Discrete Mathematics 101 (1992) 333-341. It is proved that, for a wide class of near-triangulations of the plane, the chromatic polynomial has no zeros between 2 and 2.5. Together with a previously known result, this shows that the zero of the chromatic polynomial of the octahedron at 2.546602. . . is the smallest non-integer real z...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Combinatorics, Probability & Computing
دوره 13 شماره
صفحات -
تاریخ انتشار 2004